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CHAPTER I

INTRODUCTION

In determining the shear stresses developed in a circular shaft by

the action of a twisting moment, the strength of materials approach pro-

vides an exact solution. One major assumption in this analysis is that

plane sections normal to the axis before twisting remain so after twisting.

This assumption is not valid for a non-circular prismatic bar or any

cross section with a non-concentric circular hole. The solution to this

problem is more difficult and considered in the theory of elasticity. As

will be shown, the theory of elasticity embodies a solution assuming a

linearly elastic material and involving the introduction of a stress function,

the appropriate derivatives of which define the shearing stresses. If the

particular stress function satisfies the conditions of equilibrium, boundary

conditions, and compatibility, the solution is mathematically unique.

As the torque is increased, material will pass from the elastic to

the plastic state. There is a limit to the ability of the cross section to

withstand increasing torque. This limit is called the plastic strength in

torsion; it represents that value of torque above which there is no resistance

to flow and complete failure results with continued deformation. At this

condition torque is no longer a function of rotation.

The purpose of this research was to investigate and predict the

plastic strength in torsion of circular prismatic bars with a concentric or

eccentric hole. 1



CHAPTER II

THEORY OF TORSION ANALOGIES

The Membrane Analogy for Elastic Torsion

Consider a cylindrical or prismatic bar of constant cross section

which is twisted and held in equilibrium by twisting moments applied at

its ends. The cross section of such a bar is shown in Figure 1. The bar

is considered to be composed of an isotropic material possessing the

idealized stress-strain relationship for an elastic, perfectly plastic

material shown in Figure 2.

Increasing torque causes the material to pass from the elastic

region (line AB, Figure 2) into the perfectly plastic range (line BC,

Figure 2). After a point in the cross section reaches the yield stress

in shear (point B), this maximum shearing stress remains a constant value

k as increasing torque causes an increase in the plastic region of the bar.

Before examining the plastic behavior of the prismatic cross section,

consider the stress characteristics in the elastic range.

The exact solution to the problem of elastic torsion of prismatic bars
1*

was first postulated by Saint-Venant-in 1855. The displacements in the

x and y directions due to rotation of the cross sections are designated by

u and v, respectively. The warping of the cross section is denoted by w

and defined by the function 0. These displacements are assumed to be:2

* References cited are listed numerically at the end of this thesis.

2
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Figure 1 Two-Dimensional View, Prismatic Cross Section
Subjected to Torsion.
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Figure 2. Idealized Shearing Stress-Strain Curve
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u = -Ozy

v = Qzx

w= &0(x,y) (1)

With reference to Figure 3, Qz is the angle of rotation of the cross

section at a distance z from the origin 0.

x

'K A\

T .

y
----- ---

Figure 3. Three-Dimensional View, Prismatic Cross Section
Subjected to Torsion

In terms of the assumed displacements u, v, and w, the components of
3

strain are

= C • Y =0
x y z xy

ý__ + au a _ y)
aw au

S+ 4V + x) (2)yyz= a+ 7- a
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The corresponding stresses as given by elasticity theory are

a =a 0- 'T =0
x y z xy

T GY =G (__y)xz xzx

T =GY G 0 0 + x) (3)
yz yz a

4
As pointed out by Timoshenko, from the assumed displacements,

there will be no normal stresses acting between the longitudinal fibers of

the shaft or in the longitudinal directions of these fibers. At each point

in the cross section a condition cf pure shear, as defined by the stress

tensor of (4) nelow, exists.

xz0 0 Tx

yz

T T 0 (4)xz yz

From consideration of the equilibrium of forces acting on a rectangular

parallelepiped of sides dx, dy, and dz, the equilibrium equations, neglecting

body forces, reduce to5

6T T'
xz + yz = 0

Ex (y

bT bT
x.__z = 0, yz = 0 (5)

az ýz

Equation (3) satisfies the last two conditions of Equation (5).
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The vital step in the analysis, according to Den Hartog, is the

assumption by Saint-Venant that there is a function F (xy) such that the

stresses may be found from it by differentiation, that is:

a F bF (6)
xz by yz bx

The expression F (x,y) is called the elastic stress function. Substitution

of the expressions of Equations (6) into (3) yields

T G x y),- -)x = GQ (y+x) (7)
8y Cx bx 2

Differentiating the first expression cf Equations (7) with respect to y, the

second expression with respect to x, and subtracting from the first yields

the following partial differential equation in terms of the elastic stress

function F

b2F + B2 F 2
2+ 2 2G0 (8)

bx 2 by 2

Equation (8) must satisfy the boundary condition that the resultant

shearing stress at the boundary is directed along the tangent to the
7

boundary, that is

d-(+ T _x9)
xz ds yz ds

where (see Figure 1), cos (N,x)= and cos (N,y) = _- . In terms
ds ds

of the elastic stress function F, Equation (9) becomes

bF d_ + BF dx = dF (10)
by ds Fx ds ds
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Since the total derivative of the elastic stress function F with respect to the

boundary distance s is zero, the elastic stress function F is constant along

the boundary of the cross section.

The twisting moment T, with reference to Figure 1, is expressed by

the double integral

T= ý(Tyz X-rxzy) dxdy (1)

If the constant value of the stress function F on the boundary curve y =f(X)

of the cross section is taken equal to zero, as may be done for singly

connected boundaries, integration of Equation (11) yields 8

T= 2SS Fdxdy (12)

As Murphy indicates., 9 the actual determination of the stress function

as defined by Equation (8) for all but a few relatively simple cross sections

becomes difficult, if not impossible, to determine analytically.

Quantitative solutions to the differential Equation (81 however, can

be obtained by use of the membrane analogy. Prandtl observed in 1903 that

the equation (8) of the elastic stress function is the same as the differential

equation for the shape of a stretched membrane, originally flat, which is

inflated by air pressure from below. This equation, as derived from the

equilibrium of forces when summed in the direction z, is10

b2 2
2 + 2 p (13)ax 2 ay 2 s
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In Equation (13) z is the deflection of the membrane, p is the pressure acting

on the membrane, and s is the surface tension developed in the membrane.

Equation (8), the differential equation of elastic torsion, is identical in

form to Equation (13) if

2 = 2GO (14)
s

If in addition the boundary conditions are satisfied, the deflection z w-i+l

equal F (x,y), the elastic stress function. In summary, the stress function

F(x,y) is represented by the curved surface of the membrane and the con-

tour lines of the surface represent the stress lines of the elastically

twisted cross section. The tangent in the xy plane to any contour line of

the membrane is in the direction of the resultant shearing stress T . The

stress is proportional to the slope of the stress surface F (x,y). The

twisting moment T is equal to twice the volume enclosed by the stress sur-

fac e.

These characteristics of the membrane analogy have permitted exten-

sive quantitative measurements of the stresses in a twisted bar within the

elastic range. Griffith and Hetenyi12 outline applications of the membrane

analogy.

The Sand-Heap Analogy for Plastic Torsion

If the cross section of Figure 1 is twisted beyond the yield point,

certain parts of the bar will be deformed plastically. The condition at which
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plastic deformation commences is, according to Prager, 13 expressed by

2I1 - k = 0 (15)

where 12 is the second invariant of the stress tensor. It is independent of

the orientation of the coordinate axes. 12 is expressed by (see Reference 14)22

2 +o o + a )+ 2 + 2+T 2(16)
2 yx 'z zI x xy yz zx

The condition of stress in torsionas represented by the stress tensor of

(4) produces, when substituted in the condition of plasticity of Equation (15),

2 + T 2= k2 = constant (17)
xz yz

The yield condition of Equation (15) was first postulated by Von Mises 1 5

but its most widely known physical interpretation is embodied in the

octahedral shearing stress theory introduced by Nadai.1 6

The equilibrium equations (5) must be satisfied in the plastic as well

17as elastic region. As noted by Nadai , Equations (5) are satisfied if

bF 1 (x, Y) b F1I(x, y)T = , =- (18)

xz a y yz ax

in which F1 (x,y) represents the plastic stress function of the cross section.

In those regions of the cross section where plastic flow occurs the con-

dition of plasticity of Equation (17), in terms of the plastic stress function,

is 2 2

-ax + 2(19)
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The left side of Equation (19) is the square of the largest slope of the sur-

face FI. From the mathematical definition of the gradient, Equation (19)

may be expressed as

Igrad F = k = constant (20)

where k is the maximum shearing stress shown in Figure 2o

As in the case of the elastic stress function F, the shearing stresses

are directed tangentially to the contour lines of the plastic stress surface,

The surface representing this plastic stress function may be thought of as

the maximum value that the elastic stress function can attain. The plastic

stress function may be considered as a "roof" under which the membrane,

geometrically the same as the cross section, expands. When the membrane

touches the "roof," the condition of plasticity of Equation (17) is satisfied

and plastic yielding begins at that point in the cross section. As the torque

is increased, as represented by increasing air pressure on the membrane,

the membrane expands and touches more of the "roof ." At the limit the

membrane fills the entire volume under the roof. The cross section is con-

sidered to have attained a fully plastic state. Following the membrane

analogy, the torque required to achieve the fully plastic state is equal to

twice the volume under the "roof."

The mathematical and physical interpretation of the plastic stress

function F (x,y) for the case of complete yicling, of the entire prismatic

bar can be demonstrated by sand heaps covering a plate similar in cross

section to the twisted bar. This analogy was first presented by Nadai at
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a meeting of the German Society of Applied Mathematics and Mechanics in

Marburg, Germany in 1923.

18
As described by Sadowsky, .. ."A plate whose shape is geometrically

similar to the cross section of the twisted bar series as a horizontal tray

to hold a heap of dry uniform sand. The heap is to be as big as it is pos-

sible to pile by pouring a gentle stream of sand on top of the model, the

excessive sand rolling freely down the slopes of the heap and falling off

the elevated tray. The maximum-size heap being formed, its volume V is

determined by weighing..." The twisting moment T in plastic torsion is

now given by the equation

T = 2 - V (21)
m

in which k is the maximum value of the shearing stress in Figure 2 and m

is the maximum value of the slope of the lateral surface of the sand heap.

In addition, the horizontal lines of the heap, projected vertically down on

the supporting tray, give the system of trajectories of the maximum

shearing stress k acting upon the cross section.

19
As pointed out by Murphy, the relative strength of cross sections

of different shapes may be determined through use of the sand-heap

analogy. It is the purpose of this investigation to evaluate the effect of

circular holes, of varying size and location, upon the capability of a cir-

culer cross section to sustain plastic torsion. The sand-heap analogy as

developed by Nadaiandas modified by Sadowsky to include holes will

be used.



12

The Sand-Heap Analogy Applied to Cross Sections with Holes

The twisting moment T, as given by Equation (21) is applicable to

cross sections with and without holes. However, in carrying out the

experiment it can be visualized that even the presence of a small hole in

the cross section will permit an excessively large amount of sand to flow

through it. The volume of sand remaining on the tray would not therefore

be proportional to the torque required to obtain a fully plastic condition

in the cross section. 2 0

Therefore, Sadowsky in 1941 modified Nadai's original analogy.

If the cross section has holes, similar holes must be made in the sup-

porting tray. In order to prevent the sand from flowing out through these

holes, cylinders capable of vertical movement must be inserted into the

holes. To hold the tray and to insure vertical travel a device as shown

in Figure 4 and Plate I was constructed. Trays A and B are geometrically

similar to the cross section under investigation.

(A)

(B)

Figure 4. Model for Sand-Heap Analysis of Cross Section with Hole
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It is important that the top of cylinder C be kept horizontal and its inner

conical edges be sharpened so that a grain of sand placed on this edge will

fall through the cylinder.

At the beginning of the experiment, the cylinder C is moved into a

position as high as possible and a maximum sand heap is formed on the

upper tray only. At this stage the cylinder is free of sand standing above

the sand heap. After the maximum heap is formed, as shown in Figure 4,

the cylinder is gradually lowered. At a certain position the top of the

cylinder will reach the surface of the heap and the sand will commence to

fall through the top of the cylinder. The lowering of the cylinder will con-

tinue until the brim of the cylinder is completely submerged in the sand.

In the final position, the cylinder is at the maximum height at which no

part of its lateral surface will protrude from the heap and be visibly

exposed. Although extremely complicated mathematical surfaces may be

formed in three-dimensional sand heaps, the geometric problem solves

itself through the medium of the sand. This procedure applies as well to

cross sections with more than one hole.

Designate V as the volume of the sand remaining on the tray after0

the cylinder or cylinders have been lowered. Let S1 , S2 ... Sn be the

areas of the holes, with depths h 1 , h2 , ... hn - as measured from the

level of the tray up to the top of the cylindrical opening. Then the volume

V as defined by Equation (21) is



14

V-Vo +Sh 1 +S2h2+'..Snhn (22)

The twisting moment T is therefore given by

T-2; (V +S h1 +S 2 h2 + ... S h (23)

The mathematical derivation of Equation (23) follows. Consider the

twisted prismatic cross section with a hole shown in Figure 5.

Ca•• bg

a - b
e f --OF, e

Fh e

Ty R

zz

d

y

Figure 5.* Two-Dimensional View, Prismatic Cross Section
with Hole.

R is the entire cross-sectional area including the region RI of the hole.

The twisting moment T is therefore

T (T (X - T y)dxdy- (T X-T y)dxdy (24)
/, yz xz ii yz xz

R (xy) R'(x, y)

Defining the shearing stresses in terms of the plastic stress function F1,

one obtains
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k BF1I k bF 1

xz- -and yz m x (25)

Substituting these expressions for shearing stresses into Equation (24) and

noting that k and m are constants, one finds

T =- -~ 2.X +.L'y~) dxdy+h' (BF 1x + iL y) dx dy
m )'x ýY m Bx b

R R'

Consider the first integral over the region R with the limits of integra-

tion indicated from Figure 5,

I ý aFIX+ ýy-'Y) dxd kla UIxR

+ b bdy] dx d [xF bd F dldy

I a Cc a a

equals

2 5  b dX_ dy-xFa (yd -yok db

c aac



d b 16

But 5 (xbxa)dy (Yd --Yc)dx-A, theareaofregionR.

C

Therefore, the first integral equals

k{2 F 1 dydx - 2 Fo AIn loutside

Taking F1  equal to zero, which is the height of the base of
outside

the sand heap, one obtains from the first integral

b d

2 i F1 dydx

c

In a similar manner the second integral over R' is

k ý((F IF, kf h
m 1x +- 1 y 1dxdy=- mFlhole A-

m Rj L ax byMI hole

where A' is the area of the region R'. Since the top of the region R' is

made open, the height of the sand heap in R' is zero and F1 is zero over

the region R'. The second integral therefore equals 2-- F A'
m 1hole

The twisting moment T is

m I 1dd lhole (26)
a

Since F1 is equal to the height of the sand heap, the terms in

braces are the volume of the sand on the tray V and the volume enclosing
0

the hole, respectively. If Flhl is designated as h1 , the height of the
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sand heap at the hole, it follows that the twisting moment T as expressed by

Equation (23) and Equation (26) are equal for a cross section with one hole.

For this case

T = 21i V + h 1 S} (27)

This relationship will be used directly for this analysis.



CHAPTER III

DIMENSIONAL ANALYSIS

In order for the results to be of general application, use was made

of the Buckingham Trtheorem to present the experimental results in non-

dimensional form. The Buckingham Tr theorem states that the number of

dimensionless and independent quantities required to express a relation-

ship among the variables in any phenomenon is equal to the number of

quantities involved minus the number of dimensions in which these quan-

tities may be measured. That is, s = n - b, where s is the number of T

terms, n is the total number of quantities involved, and b is the number of

basic dimensions. 21

Figure 6. Two-Dimensional View, Circular Cross Section
with Circular Hole.

18
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For this case (see Figure 6) choose

T f (k, R, r, c) (la)

Dimensionally

T = twisting moment A (FL)

k = maximum shearing stress A (FL- )

R = radius of circular cross section - (L)

r = radius of circular hole _ (L)

c = distance from center of hole to center of cross
section & (L)

Since

s= n-b=5 -2=3

Three TT terms are necessary to describe twisting moment behavior of the

cross section in plastic torsion.

From Equation (la) where A denotes dimensional equivalence

a bc d e
1 " (T) (r) (c) (R) (k)

Dimensionally

1 1(FL)a (L)b(L)c (L)d (FL- 2 )e

F: 0- a+e

L: 0A a +b+c +d-2e

Since there are two independent equations in five unknowns,

evaluate d and e in terms of a, b, and c:
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e - -a

d = -3a - b - c

Therefore

ba bc -3a - b -c (k)-a
I (T)_(r) (C) (R)

(--)a (I)b (c)
R~k

Expressed functionally,

)=f ( (c.
R~k

The experimental results will therefore be expressed in the three non-
T r c

dimensional 1T terms of T r R
R 3k R ' R



CHAPTER IV

EXPERIMENTAL PROCEDURES

Prior to investigating the effect of a circular hole on the plastic

strength in torsion of a circular section, sections whose plastic stress

function equation were known were investigated. Circular, square, and

rectangular cross sections were tested to verify experimental techniques

The results are contained in the Appendix.

The sand used was Ottawa sand, American Society Testing Materials

designation C-190, produced by the Ottawa Silica Company, Ottawa,

Illinois. Of uniform composition its specific volume was determined as

the arithmetic mean of ten measurements to be 39.398 cubic inches per

kilogram.

Its slope m was determined to be 0.636. The volume V was deter-0

mined by measuring the mass of sand remaining on the tray. The height of

the circular cylinder h was also measured.

The value of - was determined using Equation (27) in terms of the
kR

3

sand-heap analogy. In order to measure the effect of varying size and

location of the hole, the radius of the hole was varied as follows: r = 0.25 in.,

0.50 in., 0.75 in., 0.875 in., 1.125 in., 1.313 in., 1.50 in.,

1.750 in., 2.0 in., 2.250 in., and 3.313 in. The radius of the circular

cross section R was constant at six in. The offset c varied as follows:

c = 1.2 in., 2.4 in., 3.6 in., 4.8 in., and 6.0 in.

Plates 1 through 8 (see Appendix) picture the model and several sand

heaps formed. 21



CHAPTER V

RESULTS AND CONCLUSIONS

Results are shown in Figures 7 and 8. The data for each size hole and

keyway are tabulated in Tables I through 11. Figure 7 shows the maximum

strength in torsion when the circular shaft has an interior hole. Figure 8

predicts the maximum strength in torsion of a circular sbhat with a keyway.

It is noted in the tables that when the offset distance c has increased to

where the hole has become a keyway, the region becomes singly connected

and the stress function is taken as zero about the keyway circumference.

The curves are used in the following manner. Knowing the size r,
T

location c, and radius of the cross section R, the value -- is determined
kR

3

if L < 0.56. The yield stress k is determined from the shearing stress-
R -

strain curve of the material. The value of T, the maximum strength in

torsion, is then determined in the appropriate dimensions of k and R.

With the exception of mild steel, which behaves very nearly as a
22

perfectly plastic material at the beginning of strain hardening, the

material possessing the characteristics of Figure 2 are rarely found. How-

ever, depending on the degree of conservativeness desired in the design

and the specific material characteristics, an idealization of the shearing

stress-strain curve can be made to determine the value k.

The above analysis assumes that the shearing strains remain small

in order that no components of normal stresses act in sections normal or

parallel to the axis of the bar. 23

22
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Mindful of these assumptions and resulting limitations, Figures 7 and

8 can be used in predicting the maximum strength in torsion of circular

cross sections with holes.
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Figure 7. Maximum Strength in Torsion-Circular Bar with Hole.
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Table 1. Experimental Results,* L 0,! - 0.0417, r = 0.25"

R R

c Mass V h hs V +hs T

R (gms) (in0) (in) (in3 ) 0 kR 3

no hole 3850 151.682 151.682

3821 150.540 150.540 2.1976

3824 150.658 150.658

0 3712 146.245 3.250 0.638 146.883

3726 146.797 3.156 0.619 147.416 2.1464

3740 147.349 3.156 0.619 147.968

0.2 3776 148.767 2.686 0.528 149.295

3778 148,846 2.500 0.491 149.337 2.184

3828 150.816 2.906 0.570 151.386

0.4 3827 150.776 2.031 0.399 151.175

3774 148.688 1.906 0.374 149.062 2.1816

3777 148.806 2.013 0.399 149.205

0.6 3745 147.546 1.188 0.233 147.779

3762 148.136 1.250 0.246 148.382 2.1672

3817 150.382 1.219 0.239 150.406

0.8 3744 147.506 0.500 0.098 147.614

3772 148.609 0.594 0.116 148.725 2.168

3812 150.185 0.625 0.122 150.307

1.0 3747 147.624

3768 148.452 2.1504

3732 147.033

* All calculations on Marchant Model SKA Desk Calculator.
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Table 2. Experimental Results,s - 0.0833, r - 0.50 in.

c Mass Vo h hs V +hs T
R (gins) (0n3) (in) (in 3 ) kR3

0 3732 147.033 3.219 2.528 149.561

3739 147.309 3.187 2.503 149.812 2.167

3672 144.670 3.157 2.480 147.150

0.2 3732 147.033 2.469 1.939 148.972

3732 147.033 2.594 2.037 149.070 2.174

3753 147.861 2.531 1.988 149.849

0.4 3682 145.063 1.844 1.448 146.511

3665 144.394 1.781 1.399 145.793 2.150

3707 146.048 1.875 1.473 147.521

0.6 3701 145.812 1.157 0.909 146.721

3647 143.685 1.157 0.909 144.594 2.122

3679 144.945 1.188 0.933 145.878

0.8 3541 139.508 0.427 0.335 139.843

3621 142.660 0.406 0.319 142.979 2.079

3687 145.260 0.379 0.295 145.555

1.0 3737 147.230

3739 147.309 2.148

3757 148.018
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Table 3. Experimental Results,- 0.125, r - 0.75 in.
R

c Mass V0  h hs V +hs T
R (gins) (in 3 ) (in) (in3 ) 0 kR3

0 3637 143.290 3.000 5.301 148.591

3625 142.818 3.031 5.356 148.174 2.164

3652 143.881 3.000 5.301 149.182

0.2 3597 141.715 2.281 4.031 145.746

3572 140.730 2.156 3.801 144.531 2.107

3548 139.784 2.313 4.087 143.871

0.4 3572 140.730 1.594 2.817 143.547

3586 141.281 1.594 2.817 144.098 2.089

3550 139.863 1.625 2.872 142.735

0.6 3515 138.484 0.875 1.546 140.030

3452 136.002 0.938 1.658 137.660 2.010

3422 134.820 0.906 1.601 136.421

0.8 3452 136.002 0.188 0.332 136.334

3397 133.835 0.219 0.387 134.222 1.982

3492 137.578 0.219 0.387 137.965

1.0 3664 144.352

3614 142.384 2.096

3687 145.260
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Table 4. Experimental Results, - 0.146, r - 0.875 in.
R

c Mass V0  h hs V0 +hs T
R (gins) (in3 ) (in) (in 3 ) kR3

0 3520 138.681 2.969 7.141 145.822

3577 140.926 2.875 6.916 147.842 2.1334

3529 139.034 2.875 6.916 145.950

0.2 3572 140.730 2.156 5.186 145.916

3560 140.257 2.344 5.638 145.895 2.120

3538 139.390 2.344 5.638 145.028

0.4 3542 139.948 1.531 3.683 143.631

3450 135.923 1.594 3.834 139.757 2.060

3480 137.105 1.656 3.983 141.088

0.6 3409 134.308 0.937 2.254 136.562

3467 136.593 0.937 2.254 138.847 2.006

3444 135.687 0.906 2.180 137.867

0.8 3442 135.608 0.188 0.452 136.060

3352 132.062 0.188 0.452 132.514 1.942

3340 131.590 0.188 0.452 131.635

1.0 3635 143.212

3567 140.533 2.074

3645 143.606
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Table 5. Experimental Results, L - 0.188, r - 1.125 in.
'R

c Mass V0 h hs Vo+hs T
R (gins) (in 3) (in) (id) kR3

0 3496 137.735 2.938 11.681 149.416

3477 136.987 2.938 11.681 148.668 2.166

3472 136.790 2.875 11.431 148.221

0.2 3502 137.972 2.500 9.940 147.912

3527 138.956 2.500 9.940 148.896 2.145

3432 135.214 2.500 9.940 145.154

0.4 3419 134.702 1.563 6.214 140.916

3492 137.578 1.594 6.338 143.916 2.067

3426 134.978 1.531 6.087 141.065

0.6 3394 132.717 0.750 2.982 136.689

3352 132.062 0.718 2.855 134.917 1.965

3310 130.407 0.718 2.855 133.262

0.8 3292 129.698 0.0312 0.124 129.822

3294 129.777 0.0312 0.124 129.901 1.884

3257 128.319 0.0312 0.124 128.443

1.0 3522 138.760

3602 141.911 2.049

3592 141.517
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Table 6. Experimental Results, I - 0.219, r - 1.313 in.

R

C Mass V h hs V +hs T
R0 0(gms) (in3 ) (in) (in 3 ) kR3

0 3384 133.323 2.656 14.385 147.708

3362 132.456 2.750 14.894 147.350 2.150

3385 133.362 2.687 14.553 147.915

0.2 3285 129.422 2.031 11.000 140.422

3331 131.235 2.031 11.000 142.235 2.056

3297 129.895 2.031 11.000 140.895

0.4 3266 128.674 1.406 7.615 136.289

3237 127.531 1.406 7.615 135.146 1.972

3232 127.334 1.406 7.615 134.949

0.6 3182 125.364 0.656 3.553 128.917

3126 123.158 0.656 3.553 126.711 1.869

3197 125.955 0.687 3.553 129.508

0.8 3097 122.016

3132 123.395 1.791

3137 123.592

1.0 3564 140.414

3506 138.129 2.026

3519 138.646
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Table 7. Experimental Results, x - 0.250, r - 1.500 In.

C Mass Vo h hs Vo+hs T
R (gms) (in 3) (in) (tn3 ) kR 3

0 3292 129.699 2.625 18.555 148.254

3275 129.028 2.719 19.220 148.250 2.152

3262 128.516 2.594 18.336 146.852

0.2 3205 126.271 2.063 14.583 140.854

3177 125.167 2.000 14.137 139.304 2.044

3209 126.428 2.063 14.583 141.011

0.4 3117 122.804 1.313 9.281 132.085

3096 121.976 1.344 9.500 131.476 1.912

3087 121.622 1.219 8.617 130.239

0.6 3107 122.409 0.656 4.637 127.046

3042 119.849 0.594 4.199 124.048 1.810

2994 117.958 0.563 3.980 121.938

0.8 3022 119.061

3032 119.455 1.745

3069 120.912

1.0 3414 134.505

3395 133.756 1.960

3442 135.608
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Table 8. Experimental Results,- 0.292, r - 1.750
R

c Mass Vo h hs Vo + hs T
R (gins) (in3 ) (in) (in3) ks3

0 3054 120.321 2.406 23.149 143.470

3098 122.055 2.500 24.053 146.1OP 2.100

3028 119.297 2.469 23.755 143.052

0.2 2987 117.682 1.844 17.741 135.423

3071 120.991 1.865 17.944 138.935 1.998

3022 119.061 1.906 18.338 137.399

0.4 2917 114.924 1.094 10.526 125.450

2954 116.382 1.094 10.526 126.908 1.838

2943 115.948 1.094 10.526 126.474

0.6 2909 114.609 0.500 4.811 119.420

2922 115.121 0.500 4.811 119.932 1.745

2929 115.397 0.500 4.811 120.208

0.8 2968 116.933

2966 118.036 1.700

2928 115.357

1.0 3358 132.298

3370 132.771 1.930

3364 132.535
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Table 9. Experimental Results, s- 0.333, r - 2.0 in.

c Mass V h hs Vo+hs T
R (gms) (tA) (in) (in3 ) kR3

0 2837 111.772 2.281 28.664 140.436

2824 111.260 2.250 28.274 139.534 2.038

2823 111.221 2.281 28.664 139.885

0.2 2793 110.039 1.687 21.200 131.239

2742 108.029 1.687 21.200 129.229 1.893

2741 107.990 1.719 21.602 129.592

0.4 2789 109.881 1.000 12.566 122.447

2772 109.221 1.000 12.566 121.787 1.772

2758 108.660 0.969 12.177 120.837

0.6 2692 106.059 0.375 4.712 110.771

2659 104.759 0.344 4.323 109.082 1.596

2667 105.074 0.313 3.933 109.007

0.8 2789 109.881

2838 111.812 1,613

2807 110.590

1.0 3287 129.501

3254 128.201 1.869

3231 127.295



35

Table 10. Experimental Results, 0.375, r - 2.25 in.

c Mass VO h hs Vo+hs T
R (gins) (in3 ) (in) (in 3 ) kR3

0 2637 103.893 2.156 34.290 138.183

2597 102.317 2.188 34.799 137.116 1.973

2612 102.908 2.158 34.322 137.222

0.2 2594 102.198 1.469 23.364 125.562

2570 101.253 1.469 23.364 124.617 1.820

2571 101.292 1.469 23.364 124.656

0.4 2527 99.559 0.906 14.409 113.968

2562 100.938 0.906 14.409 115.347 1.670

2545 100.268 0.906 14.409 114.677

0.6 2392 94.240 0.094 1.495 95.898 1.395

2396 94.398 0.094 1.495 95.893

0.8 2747 108.226

2740 107.950 1.575

2750 108.345

1.0 3223 126.980

3232 127.334 1.849

3212 126.546
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Table 11. Experimental Results, 0.5522, r - 3.313 in.

c Mass V h hs V +hs TR (gms) (in°3) (in) (0n) o-kR 3

0 1626 64.061 1.500 51.723 115.784

1645 64.810 1.500 51.723 116.533 1.752

1654 65.164 1.500 51.723 116.887

0.2 1562 61.540 0.625 21.551 83.091

1582 62.328 0.625 21.551 83.879 1.222

1605 63.234 0.625 21.551 84.785

0.4 1452 57.206 0.125 4.310 61.516

1415 55.748 0.125 4.310 60.058 0.880

1405 55.354 0.125 4.310 59.664

0.6 1727 68.040

1704 67.134 0.972

1736 68.395

0.8 2192 86.360

2221 87.503 1.270

2232 87.936

1.0 2723 107.281

2730 107.557 1.566

2737 107.832
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Plate I Model, R .375, R 0 Plate 2 Sand Heap/, R .375, R 0

R C r 2 cPlate 3 Sand Heap, R/p 0, /R = 0 P •ate 4 Sand Heap, rR = 219, cR = 1.O
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r /P la t e 5 S a n d H e a p , R . 5 5 2 . R 1 . 0 P la t e 6 S a n d H e a p , R = .0 8 3 3 , R .4

r l/R

Plate 7 Sand Heap, rR =.292, /R : 2Plate 
8 Sand Heap, r/R =.552, ¢R=.



40

CALIBRATION EXPERIMENTS

The plastic stress functions for such singly connected regions as a

circular, square, and rectangular cross section can readily be predicted

mathematically. The plastic stress function for a circular section is the

surface of a right circular cone and its strength in plastic torsion is equal

to twice the volume of a right circular cone whose slope is equal to the

yield stress k. Similarly, the plastic strength of a square bar would equal

twice the volume of a pyramid. In order to compare theoretical with

experimental techniques, the above sections were tested and the value

T determined. The average per cent deviation from theory was 5.05 per
k"

cent.

Circular Section

aa - 5 inches

Theory 2 4  T 2a3 - 2rr (125) -261.5k 3 3

Experment T _ 2V
Experiment , V 82.8 cubic inches (determined by

k m weighing)

m - 0.636 (determined by measuring micro-
scope)

T _ (2)(82.8) - 260.5. Therefore, percent deviationfrom theory is 0.384%.
k 0.636
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Sguare Section

14
T 3 • 3=6.

Theory T a 169.7
k 3 3

Experiment T_ 2V

k m

V = 57.5 cubic inches

T2 . (2)(57.5)5 181
k 0.636

Per cent deviation from theory is 6.67 %.

Rectangular Section

~- b

a -6.06 inches

b - 8.03 inches

Theory T a + a(
k 3 2

13+ 2
T 6.06 (606) [8.03 -6,063 -100.5
k 3 2

T 2 2Experiment k V 0.3 (34.7) - 109
Per 0.636

Per cent deviation from theory is 8.* 1%.
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